Pythagoras Theorem
In a right angled triangle, the square of the length of hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

Given
ΔACB is a right angled triangle in which \(\angle C = 90^\circ \) and \(m\angle B = a \), \(m\angle A = b \) and \(m\angle A = c \).

To Prove
\(c^2 = a^2 + b^2 \)

Construction
Draw \(CD \) perpendicular from \(C \) on \(AB \).
Let \(m\angle C = h \), \(m\angle A = x \) and \(m\angle D = y \).
Line segment \(CD \) splits \(\triangle ABC \) into two \(\triangle s \) \(\triangle ADC \) and \(\triangle BDC \) which are separately shown in the figures (ii)-a and (ii)-b respectively.

Proof (Using similar \(\triangle s \))

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\triangle ADC) (\longrightarrow) (\triangle ACB)</td>
<td>Refer to figure(ii)-a and (i)</td>
</tr>
<tr>
<td>(\angle A \equiv \angle A)</td>
<td>Common – self congruent</td>
</tr>
<tr>
<td>(\angle ADC \equiv \angle ACB)</td>
<td>Construction – given, each angle = (90^\circ)</td>
</tr>
<tr>
<td>(\angle C \equiv \angle B)</td>
<td>(\angle C) and (\angle B), complements of (\angle A).</td>
</tr>
<tr>
<td>(\therefore \triangle ADC \sim \triangle ACB)</td>
<td>Congruency of three angles</td>
</tr>
<tr>
<td>(\therefore \frac{x}{a} = \frac{b}{c})</td>
<td>(Measures of corresponding sides of similar triangles are proportional)</td>
</tr>
<tr>
<td>(\text{or } x = \frac{b^2}{c})</td>
<td></td>
</tr>
</tbody>
</table>
Again in \(\triangle BDC \leftrightarrow \triangle BCA \)
1. \(\angle B \equiv \angle B \)
2. \(\angle BDC \equiv \angle BCA \)
3. \(\angle C \equiv \angle A \)

\(\therefore \triangle BDC \sim \triangle BCA \)

From
\[y = \frac{a}{c} \]
or
\[y = \frac{a^2}{c} \] \(\cdots \) (ii)

But \(y^2 + x^2 = c^2 \)
\[\therefore \frac{a^2}{c} + \frac{b^2}{c} = \frac{c^2}{c} \] \(\therefore \)
or \(a^2 + b^2 = c^2 \)

i.e., \(c^2 = a^2 + b^2 \)

Corollary

In a right angled \(\triangle ABC \), right angled at \(A \).

(i) \(AB^2 = BC^2 - CA^2 \)

(ii) \(AC^2 = BC^2 - AB^2 \)

Converse of Pythagoras’ Theorem

If the square of one side of a triangle is equal to the sum of the squares of the other two sides then the triangle is a right angled triangle.

Proof

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta DCB) is a right-angled triangle.</td>
<td>Construction</td>
</tr>
<tr>
<td>(\therefore (mBD)^2 = a^2 + b^2)</td>
<td>Pythagoras theorem</td>
</tr>
<tr>
<td>But (a^2 + b^2 = c^2)</td>
<td>Given</td>
</tr>
<tr>
<td>(\therefore (mBD)^2 = c^2)</td>
<td>Taking square root of both sides.</td>
</tr>
<tr>
<td>or (mBD = c)</td>
<td></td>
</tr>
<tr>
<td>Now in (\Delta DCB \leftrightarrow \Delta ACB)</td>
<td>Construction</td>
</tr>
<tr>
<td>(CD \equiv CA)</td>
<td></td>
</tr>
</tbody>
</table>

Refer to figure (ii)-b and (i)
Common—self congruent
Construction—given, each angle = 90°
\(\angle C \) and \(\angle A \), complements of \(\angle B \)
Congruency of three angles.
(Corresponding sides of similar triangles are proportional).

Supposition.

By (i) and (ii)
Multiplying both sides by \(c \).

Given. In a \(\triangle ABC \), \(m\overline{AB} = c, m\overline{BC} = a \) and \(m\overline{AC} = b \) such that \(a^2 + b^2 = c^2 \).

To Prove. \(\triangle ACB \) is a right angled triangle.

Construction. Draw \(\overline{CD} \) perpendicular to \(BC \) such that \(CD \equiv CA \). Join the points \(B \) and \(D \).
\[\frac{BC}{AB} = \frac{BC}{AB} \]
\[\therefore \triangle DCB \cong \triangle ACB \]
\[\therefore \angle DCB = \angle ACB \]
But \(m\angle DCB = 90^\circ \)
\[\therefore m\angle ACB = 90^\circ \]
Hence the \(\triangle ACB \) is a right-angled triangle.

Corollary: Let \(c \) be the longest of the sides \(a, b \) and \(c \) of a triangle.
- If \(a^2 + b^2 = c^2 \), then the triangle is right.

<table>
<thead>
<tr>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each side = c.</td>
</tr>
<tr>
<td>S.S.S. (\cong) S.S.S.</td>
</tr>
<tr>
<td>(Corresponding angles of congruent triangles)</td>
</tr>
<tr>
<td>Construction</td>
</tr>
</tbody>
</table>

- If \(a^2 + b^2 > c^2 \), then the triangle is acute.
- If \(a^2 + b^2 < c^2 \), then the triangle is obtuse.

Exercise Set 1F

1. Verify that the \(\triangle \)s having the following measures of sides are right-angled.
 (i) \(a = 5 \text{ cm}, \ b = 12 \text{ cm}, \ c = 13 \text{ cm} \)
 Ans. \((Hyp)^2 = (Perp.)^2 + (Base)^2 \\
 (13)^2 = (12)^2 + (5)^2 \\
 169 = 144 + 25 \\
 169 = 169 \\
 .\therefore \text{The triangle is right-angled.}

 (ii) \(a = 1.5 \text{ cm}, b = 2 \text{ cm}, c = 2.5 \text{ cm} \)
 Ans. \((Hyp)^2 = (Perp.)^2 + (Base)^2 \\
 (2.5)^2 = (1.5)^2 + (2)^2 \\
 6.25 = 2.25 + 4 \\
 6.25 = 6.25 \\
 .\therefore \text{The triangle is right-angled.}

 (iii) \(a = 9 \text{ cm}, b = 12 \text{ cm}, c = 15 \text{ cm} \)
 Ans. \((Hyp)^2 = (Perp.)^2 + (Base)^2 \\
 (15)^2 = (12)^2 + (9)^2 \\
 225 = 144 + 81 \\
 225 = 225 \\
 .\therefore \text{The triangle is right-angled.}

 (iv) \(a = 16 \text{ cm}, b = 30 \text{ cm}, c = 34 \text{ cm} \)
 Ans. \((Hyp)^2 = (Perp.)^2 + (Base)^2 \\
 (34)^2 = (30)^2 + (16)^2 \\
 1156 = 900 + 256 \\
 1156 = 1156 \\
 .\therefore \text{The triangle is right-angled.}

2. Verify that \(a^2 + b^2, a^2 - b^2 \) and \(2ab \) are the measures of the sides of a right angled triangle where \(a \) and \(b \) are any two real numbers \((a > b)\).
 Ans. In right angle triangle.
 \[H^2 = p^2 + b^2 \]
 \[(a^2 + b^2)^2 = a^4 + b^2 + 2a^2b^2 \](i)
 \[(a^2 - b^2)^2 = a^4 + b^4 - 2a^2b^2 \](ii)
 \[(2ab)^2 = 4a^2b^2 \] (iii)
 Adding (ii) and (iii) we get
 \[(a^2 - b^2)^2 + (2ab)^2 = a^4 + b^4 - 2a^2b^2 + 4a^2b^2 \]
 \[= a^4 + b^4 + 2a^2b^2 \](iv)
 Comparing (i) and (iv), we get
 \[(a^2 - b^2)^2 + (2ab)^2 = (a^2+b^2)^2 \]
 Hence \(a^2 + b^2, \ a^2 - b^2 \) and \(2ab \) are measures of the sides of a right angled triangle where \(a^2 + b^2 \) is hypotenuse.

3. The three sides of a triangle are of measure 8, \(x \) and 17 respectively. For what value of \(x \) will it become base of a right angled triangle?
 Ans.
Consider a right angled triangle

With \(\overline{AB} = x \)
\(\overline{BC} = 8 \)

and \(\overline{AC} = 17 \)

If \(x \) is the base of right angled \(\triangle ABC \) then
we know by Pythagoras theorem that
\[
(hyp)^2 = (Base)^2 + (perp)^2
\]
\[
(17)^2 = x^2 + (8)^2
\]
\[
289 = x^2 + 64
\]
\[
x^2 + 64 = 289
\]
\[
x^2 = 289 - 64
\]
\[
x^2 = 225
\]
\[
x = \sqrt{225}
\]
As \(x \) is measure of side
So \(x = 15 \) units

Proof

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>In right angled triangle</td>
<td>(\overline{CD} = 14 \text{ cm})</td>
</tr>
<tr>
<td>(\overline{mAC} = 50 \text{ cm})</td>
<td>((mAD)^2 = (mAC)^2 - (mCD)^2)</td>
</tr>
<tr>
<td>((mAD)^2 = (50)^2 - (14)^2)</td>
<td>(= 2500 - 196)</td>
</tr>
<tr>
<td>(= 2304)</td>
<td>(= \sqrt{2304})</td>
</tr>
<tr>
<td>(mAD = 18 \text{ cm})</td>
<td>(\overline{CD} = \frac{1}{2} \overline{mBC})</td>
</tr>
</tbody>
</table>

\((mAC)^2 = (mAD)^2 - (mCD)^2 \) (by Pythagoras theorem)

Taking square root of both sides

\[\text{(ii) Area of } \triangle ABC = \frac{\text{Base } \times \text{ Altitude}}{2} \]
\[= \frac{28 \times 48}{2} \]
\[= 14 \times 28 \]
\[= 672 \text{ sq.cm} \]

4. In an isosceles \(\triangle \), the base \(\overline{BC} = 28 \text{ cm} \), and \(\overline{AB} = \overline{AC} = 50 \text{ cm} \).

If \(\overline{AD} \perp \overline{BC} \), then find:

(i) Length of \(\overline{AD} \)

(ii) Area of \(\triangle ABC \)

Given
\(mAC = mAB = 50 \text{ cm} \)
\(mBC = 28 \text{ cm} \)
\(\overline{AD} \perp \overline{BC} \)

To Prove
\(mAD = ? \)
\(\text{Area of } \triangle ABC = ? \)
In a quadrilateral $ABCD$, the diagonals \overline{AC} and \overline{BD} are perpendicular to each other.

Prove that:

$$m\overline{AB}^2 + m\overline{CD}^2 = m\overline{AD}^2 + m\overline{BC}^2.$$

Given: Quadrilateral $ABCD$ diagonal \overline{AC} and \overline{BD} are perpendicular to each other.

To Prove:

$$m(\overline{AB})^2 + m(\overline{CD})^2 = m(\overline{AD})^2 + m(\overline{BC})^2$$

Proof

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
</table>
| In right triangle AOB
$m(\overline{AB})^2 = m(\overline{AO})^2 + m(\overline{OB})^2$(i) | By Pythagoras theorem |
| In right triangle COD
$m(\overline{CD})^2 = m(\overline{OC})^2 + m(\overline{OD})^2$(ii) | By Pythagoras theorem |
| In right triangle AOD
$m(\overline{AD})^2 = m(\overline{AO})^2 + m(\overline{OD})^2$(iii) | By Pythagoras theorem |
| In right triangle BOC
$m(\overline{BC})^2 = m(\overline{OB})^2 + m(\overline{OC})^2$(iv) | By Pythagoras theorem |
| $m(\overline{AB})^2 + m(\overline{CD})^2 = m(\overline{AO})^2 + m(\overline{OB})^2 + m(\overline{OC})^2 + m(\overline{OD})^2$(v) | By adding (i) and (ii) |
| $m(\overline{AD})^2 + m(\overline{BC})^2 = m(\overline{AO})^2 + m(\overline{OD})^2 + m(\overline{OB})^2 + m(\overline{OC})^2$(vi) | By adding (ii) and (iv) |
| $(m\overline{AB})^2 + (m\overline{CD})^2 = (m\overline{BC})^2 + (m\overline{AD})^2$ | By adding (v) and (vi) |

6. (i) **In the $\triangle ABC$ as shown in the figure**, $m\angle ACB = 90^\circ$ and $\overline{CD} \perp \overline{AB}$. Find the lengths a, h and b if $m\overline{BD} = 5$ units and $m\overline{AD} = 7$ units.

Given: A $\triangle ABC$ as shown
$m \angle ACB = 90^\circ$
and $\overline{CD} \perp \overline{AB}$

To prove: a, h and b.

In right angled $\triangle BDC$
$a^2 = 25 + h^2$

in right angled $\triangle ADC$
$b^2 = 49 + h^2$

in right angled $\triangle ABC$
$a^2 + b^2 = 144$

adding (i) and (ii)

$$a^2 + b^2 = 74 + 2h^2$$
from (iii) and (iv)
\[74 + 2h^2 = 144 \]
\[2h^2 = 144 - 74 \]
\[2h^2 = 70 \]
\[h^2 = 35 \]
\[h = \sqrt{35} \]

Now we will find a and b
Put
\[h^2 = 35 \text{ (in Eq. 1)} \]
\[a^2 = 25 + 35 \]
\[a^2 = 60 \]
\[a = \sqrt{60} \]
\[= \sqrt{4 \times 15} \]
\[a = 2\sqrt{15} \]

now put
\[h^2 = 35 \text{ (in Eq. 2)} \]
\[b^2 = 49 + 35 \]
\[b^2 = 48 \]
\[b = \sqrt{48} \]
\[= \sqrt{4 \times 21} \]
\[b = 2\sqrt{21} \]

SO
\[a = 2\sqrt{15} \]
\[h = \sqrt{35} \]
\[b = 2\sqrt{21} \]

(ii) Find the value of x in the shown in the figure.

In right angled triangle ADC
\[m(AC)^2 = m(AD)^2 + m(DC)^2 \]
\[(13)^2 = (AD)^2 + (5)^2 \]
\[169 = (AD)^2 + 25 \]
\[(AD)^2 = 169 - 25 \]
\[(AD)^2 = 144 \]
\[AD = \sqrt{144} \]
\[AD = 12 \text{ cm} \]

In right angled triangle ABD
\[(AB)^2 = (AD)^2 + (BD)^2 \]
\[(15)^2 = (12)^2 + x^2 \]
\[225 = 144 + x^2 \]
\[x^2 = 225 - 144 \]
\[x^2 = 81 \]
\[x = 9 \text{ cm} \]

7. A plane is at a height of 300 m and is 500 m away from the airport as shown in the figure. How much distance will it travel to land at the airport?

Here A be the position of plane and B be the position of airport.

\[mAC = 500 \text{ m} \]
\[mBC = 300 \text{ m} \]
\[mAB = ? \]

Applying Pythagoras theorem on right angled triangle ABC
\[AB^2 = AC^2 + BC^2 \]
\[= (500)^2 + (300)^2 \]
\[= 250000 + 90000 \]
\[= 340000 \]

so
\[AB^2 = 34\times10000 \]
\[AB = \sqrt{34\times10000} \]
\[= \sqrt{34\times100\times100} \]
\[= 100\sqrt{34} \text{m} \]

So required distance is \(100\sqrt{34} \text{m} \)

8. A ladder 17 m long rests against a vertical wall. The foot of the ladder is 8 m away from the base of the wall. How high up the wall will the ladder reach?

Ans. Let the height of ladder = \(x \) m in right angled triangle

\[
\text{Hyp}^2 = (\text{Perp.})^2 + (\text{Base})^2
\]

\[
(17)^2 = (x)^2 + (8)^2
\]

\[
289 = x^2 + 64
\]

\[
x^2 = 289 - 64
\]

\[
x^2 = 225
\]

\[
x = \sqrt{225} = 15 \text{m}
\]

9. A student travels to his school by the route as shown in the figure. Find \(m\overline{AD} \), the direct distance from his house to school.

According to figure, \(m\overline{AB} = 2 \text{km} \)

\(m\overline{BC} = 6 \text{km} \)

\(m\overline{CD} = 3 \text{km} \)

Here \(m\overline{AB} \) and \(m\overline{CD} \) are perpendicular

Perpendicular = \(\overline{AB} + \overline{CD} \)

\[
= 2 + 3
\]

\[
= 5 \text{km}
\]

According to Pythagoras theorem

\[
(H)^2 = P^2 + B^2
\]

\[
(m\overline{AD})^2 = (5)^2 + (6)^2 = 25 + 36
\]

\[
(m\overline{AD})^2 = 61
\]

\[
m\overline{AD} = \sqrt{61} \text{Km}
\]

10. Which of the following are true and which are false?

(i) In a right angled triangle greater angle is 90°. (T)

(ii) In a right angled triangle right angle is 60°. (F)

(iii) In a right triangle hypotenuse is a side opposite to right angle. (T)

(iv) If \(a, b, c \) are sides of right angled triangle with \(c \) as longer side then \(c^2 = a^2 + b^2 \). (T)

(v) If 3 cm and 4 cm are two sides of a right angled triangle, then hypotenuse is 5 cm. (T)

(vi) If hypotenuse of an isosceles right triangle is \(\sqrt{2} \) cm then each of other side is of length 2 cm. (F)

11. Find the unknown value in each of the following figures.

(i)

\[
\begin{align*}
4 \text{ cm} \\
3 \text{ cm}
\end{align*}
\]

By Pythagoras theorem
(Hyp)^2 = (Perp.)^2 + (Base)^2
x^2 = (4)^2 + (3)^2
x^2 = 16 + 9
x^2 = 25 \Rightarrow x = \sqrt{25}
x = 5\text{cm}

By Pythagoras theorem
(Hyp)^2 = (Perp.)^2 + (Base)^2
(10)^2 = (6)^2 + (x)^2
100 = 36 + x^2
x^2 = 64
x = \sqrt{64}
X = 8\text{cm}

By Pythagoras theorem
(Hyp.)^2 = (Perp.)^2 + (Base)^2
(\sqrt{2})^2 = (x)^2 + (1)^2
x^2 = 2 - 1
x^2 = 1
x = \sqrt{1} = 1\text{cm}

OBJECTIVE

1. In a right angled triangle, the square of the length of hypotenuse is equal to the _____ of the squares of the lengths of the other two sides
 (a) Sum
 (b) Difference
 (c) Zero
 (d) None

2. If the square of one side of a triangle is equal to the sum of the squares of the other two sides then the triangle is a _____ triangle.
 (a) Right angled
 (b) Acute angled
 (c) Obtuse angled
 (d) None
3. Let c be the longest of the sides a, b and c of a triangle. If \(a^2 + b^2 = c^2 \), then the triangle is ____:
 (a) Right
 (b) Acute
 (c) Obtuse
 (d) None

4. Let c be the longest of the sides a, b and c of a triangle. If \(a^2 + b^2 > c^2 \), then triangle is:
 (a) Acute
 (b) Right
 (c) Obtuse
 (d) None

5. Let c be the longest of the sides a, b and c of a triangle of \(a^2 + b^2 < c^2 \), then the triangle is:
 (a) Acute
 (b) Right

6. If 3cm and 4cm are two sides of a right angled triangle, then hypotenuse is:
 (a) 5cm
 (b) 3cm
 (c) 4cm
 (d) 2cm

7. In right triangle ____ is a side opposite to right angle.
 (a) Base
 (b) Perpendicular
 (c) Hypotenuse
 (d) None

ANSWER KEY

1. a
2. a
3. (c)
4. a
5. c
6. a
7. c